OPTIMAL PRODUCTION PLANNING FOR ICI PAKISTAN USING LINEAR PROGRAMMING AND SENSITIVITY ANALYSIS

Izaz Ullah Khan
Lecturer Mathematics
COMSATS Institute of Information Technology
Abbottabad, Pakistan
\&
PhD Fellow
Faculty of Science, Universiti Teknologi Malaysia
81310 Skudai, Johar Darul Ta'zim
Malaysia.
Norkhairul Hafiz Bajuri
Faculty of Management and Human Resource Development, University Technology Malaysia
81310 Skudai, Johar Darul Ta'zim Malaysia.
Imran Abbas Jadoon
Faculty of Management and Human Resource Development
University Technology Malaysia, 81310 Skudai
Johar Darul Ta'zim, Malaysia.

1. Abstract

This paper estimates an optimal production levels for the different products manufactured at ICI, a multinational company in Pakistan. The revised simplex method is used to maximize the profit generated in 2010 subjected to cost resource constraints. The production of Polyester, Soda Ash, Paints and Chemicals are taken into consideration. The production of the Soda Ash is most productive contributing more to the objective function. In the year 2010, the company was earning R.s 3, 273,756,000 from the production of these products. This amount raises by R.s 189,708, R.s 989,238 , R.s $15,594,377$ and R.s $45,408,040$ by changing production patterns within the first, second, third and fourth digits respectively. The company can earn significant profit by operating on the proposed production forecasts. The top management and decision makers can maximize the profit of the company within the name plate production capacity, setting up the future goals and outlook of the company.

KEYWORDS: Production Planning, Linear Programming, Sensitivity, Simplex Method, Supply Chain, Management Science.

2. Introduction

Linear programming is a powerful tool for the optimal allocation of scares resources with the objective of maximization of profit. Simplex method first devised by Dantzig in 1947 is used to solve LP's. He then extended the method for planning/scheduling dynamically. As such the development of a mathematical model is necessary in order to make best choice among several alternatives using its numerical values (Dantzig, 1963), (Adams, 1969), (Hiller et al., 1995). The noble laureate Leonid Kantorovich (USSR) and Tjalling Koopmas (USA) were awarded for their work on the optimal allocation of resources using the technique of linear programming. Bierman and Bonini (1973) pointed its usefulness in decision making process of making the best choice with several different alternatives. Linear programming is about making rules and relations with limited funds and technological restrictions (Andrade, 1990). David (1982) and Nearing and Tucker (1993) emphasized the application of the tool in tactical and strategic management. The simplex method is regarded as the most important and credible method devised of the mid $20^{\text {th }}$ century. Now a day it is a benchmark optimizing tool saving thousands and millions of dollars in many organizations. Linear programming can be effectively applied to diverse fields including transportation, telecommunication, energy, blending and production, airline crew scheduling, network flows (Winston and Albright, 2000), (Anderson et al., 2002).

Linear programming has been used in operational management such as aggregate production planning, service productivity, product planning, product routing, process control, inventory control and distribution scheduling, plant location and material handling (Manley and Threadgill, 1991), (Zappe et al., 1993), (Jacob et al., 1996). Linear programming works for maximizing the company's profits with the minimal consumption of resources (Chopra and Meindl, 2001), (Thomas, 2002), (Stadtler, 2000), (Taghrid and Hassan, 2009), (Fagoyinbo et al., 2011). This research takes into consideration the sale/production of the four main products of ICI Pakistan Limited. The profit and loss data has been obtained from the keenly prepared annual book of the year 2010. The study points out the product that is contributing more to the objective function (profit). The simplex method is used to get the best possible consumption of the resources (cost) of the problem for ICI Pakistan. As a matter of nature some bottleneck may occur, e.g. the demand for one product may be greater than other. This research considers such bottlenecks in the formulation and modeling of the linear programming problem.

3. MATERIALS AND METHODS

A linear programming problem with " n " decision variables and " m " constraints can be mathematically modeled as (Taha, 1975), (Zeleny, 1982), (Winston, 1995), (Higle and Wallence, 2003).
Maximize. $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
s.t
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2}$
.
$. a_{n 1} x_{1}+a_{22} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m}$
$x_{1}, x_{2}, \ldots x_{n} \geq 0$
This can be written as,
$\max z=c^{t} x$
s.t,
$A x \leq b$,
$x \geq 0$
ICI Pakistan is a limited company enlisted in Karachi, Lahore and Islamabad Stock Exchange. The company is engaged in manufacturing of Polyester, Soda Ash, Paints and Chemicals. The profit and loss data of the manufactured products of the company is obtained from the annual book of the year 2010. In this regard, the commission and discounts paid by the company are presented in Table 1.
Table 1 Tax, Commission, Duty, Discounts to Distributors and Customers.
Table 2 contains the cost of goods sold of the four mentioned products. The selling and distribution expenses and the administration and general expenses incurred on the products in 2010 are presented in Table 2 and Table 3 respectively.
Table 2 Cost of Goods Sold.
Table 3 Selling and Distribution Expenses.

Table 4 Administration and General Expenses.

The per metric tons/per kilo liters profit and expenses of the company are summarized in the Table 5 .
Table 5 Summarized Profit and Loss of the Company.
Let x 1 , x2, x3, and x 4 represent the quantity sold/produced of the Polyester, Soda Ash, Paints and Chemicals respectively, then the initial linear programming model can be formulated as,
Maximize $\mathrm{z}=15586.93 \mathrm{x} 1+3066.59 \mathrm{x} 2+3885.23 \times 3+14404.69 \mathrm{x} 4$
Subject to
$408.02 \times 1+967.14 \times 2+28533.76 \times 3+9711.33 \times 4<=1472112000$
$120411.1 \times 1+17385.47 \times 2+96443.35 \times 3+138703.3 \times 4<=26179724000$
$559.18 \times 1+696.13 \times 2+22133.74 \times 3+9085.12 \times 4<=1181683000$
$2044.18 \times 1+996.05 \times 2+12985.97 \times 3+9413.92 \times 4<=1150763000$
$\mathrm{x} 1>=129730$
$x 2>=291860$
$x 3>=34566$
$x 4>=15508$
The next section discusses the solution of the initial model using the Excel Solver.

4. RESULTS AND DISCUSSIONS

The solution of the initially proposed model is obtained by utilizing the Microsoft Excel® solver. The solution of the model is presented in Figure 1.

Figure 1 Answer Report.
Figure 2 Limits Report.
The answer report of the initial linear programming model shows that the company can generate a profit of R.s 3273786300 , an amount R.s 30,300 greater than the presently operating profit. The cost of goods sold, quantity sold of polyester, paints and chemicals are binding constraints and they are consumed fully whereas all the other constraints are non binding and are available for the future production runs. The limits report in Figure 2 shows the lower and upper limits of the variables in which the solution is optimal.

4.1 Sensitivity Analysis and Different Production Runs

The sensitivity analysis of the model gives important information about the manufacturing process (Kinc, 2008).The sensitivity report of the model is given in the Figure 3.

Figure 3 Sensitivity Report.
The reduced cost shows that quantity produced of the soda ash and then that of polyester takes less amount of cost in the production run whereas that of quantity of paints and chemicals consume much of the cost. The shadow price shows that an R.s 1 spent as the cost of goods sold is contributing at the rate of R.s 0.176 to the maximization of the profit for future production runs based on the initial linear programming model. Several production runs of the optimized model on various production spaces within the nameplate production capacity are summarized in the Table 6.

Table 6 Various Production Runs in The Name Plate Capacity.

5. CONCLUSIONS AND RECOMMENDATIONS

The techniques of linear programming and sensitivity analysis were used to maximize the profit generated from the production patterns of the ICI Pakistan. Four different products manufactured at the company were taken into consideration. The analysis predicted that the production of Soda Ash is contributing more than other products to the objective function. The company is already a prime supplier of the Soda Ash in the region. The sensitivity analysis reveals the fact that a cost of R.s 1 spent as the cost the goods sold returns at the rate of R.s 0.176 . The company can save profits of R.s 189,708 , R.s 989,238 , R.s $15,594,377$ and R.s $45,408,040$ by changing its production space within the first, second, third and fourth digits respectively. The research reveals that among the other products Soda Ash is more profitable to the company and the company should give more attention to its production to maximize its profit. The research is significant in the sense that it will assist the top management of the company in making corrective decisions well in time using the methods of linear programming. This will determine the future production patterns and outlook resulting in the establishment of new production units, while planning for maximizing profits of the company.

6. REFERENCES

Adams, W. J. (1969). Elements of linear programming. Van Nostrand Reinhold Publishing Company International.
Anderson, D. R., Sweeney, D. J., \& Williams, T. A. (2002). An introduction to management science. (10th ed.). Cincinnati, OH: South-Western.
Andrade, E. L. (1990). Introdução à pesquisa operacional. LTC, Rio deJaneiro.
Bierman, Jr., Bonini, H., \& Charles, P. (1973). Quantitative analysis for business decisions. (4th ed.). Richard D. Irwin, Illinois.
Chopra, S., \& Meindl, P. (2001). Supply chain management: strategy, planning and operation. Prentice-Hall Inc.
Dantzig, G. B. (1963). Linear programming and extension. Priceton University Press.
David, C.H. (1982). Introduction concept and application of operation research.

Fagoyinbo, I. S., Akinbo, R. Y., Ajibode, I. A., \& Olaniran, Y.O.A. (2011). Maximization of profit in manufacturing industries using linear programming techniques: Geepee Nigeria Limited. In the Proceedings of the 1st International Technology, Education and Environment Conference, pp. 159-167.
Higle, J. L., \& Wallence, S. W. (2003). Sensitivity analysis and uncertainty in linear programming. INFORMS, 33, 53-60.
Hiller, F.S., Lieberman G. J., \& Liebeman, G. (1995). Introduction to operations research. New York: McGraw-Hill.
Jacobs, D. A., Silan, M. N., \& Clemson, B. A.(1996). An analysis of alternative locations and service areas of American Red Cross blood facilities. Interfaces, 26, 40-50.
Kinc, U.A. (2008). A note on the linear programming sensitivity analysis in blending problems. Applied Sciences, 2, 241-248.
Manley, B. R., \& Threadgill, J. A. (1991). LP used for valuation and planning of New Zealand plantation forests. Interfaces, 21, 66-79.
Nearing, E. D., \& Tucker, A. W. (1993). Linear programming and related problems. Academic Press Boston.
Stadtler, H. (2000). Supply chain management and advanced planning: concepts, models, software and case studies. Springer-Verlag, Berlin Heidelberg.
Taghrid, I., \& Hassan, F. (2009). Linear programming and sensitivity analysis in production planning. IJCSNS International Journal of Computer Science and Network Security, 9, 456-465.
Taha, H. H. (1975). Integer programming: theory, applications and computations. New York: Academic Press.
Thomas, R. (2002). A de novo programming model for optimal distribution network design in a supply chain. Center for Business and Economics, Midwest Business Administration Association Annual Meeting.
Winston, W. L. (1995). Introduction to mathematical programming: applications and algorithms. (2nd ed.). Belmont, CA: Duxbury Press.
Winston, W. L., \& Albright, S. C. (2000). Practical management science. (2nd ed.). Belmont, CA: Duxbury Press.
Zappe, C., Webster, W., \& Orowitz, I. H. (1993). Using linear programming to determine post-facto consistency in performance evaluations of major league baseball players. Interfaces, 23, 107-13.
Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw Hill Book Company.

7. TABLES

Table 1 Tax, Commission, Duty, Discounts to Distributors and Customers.

	Polyester (000) R.s	Soda Ash (000) R.s	Paints (000) R.s	Chemicals (000) R.s
Sales Tax	0	$1,263,579$	900,599	290,709
Excise Duty	0	60,160	54,115	7,546
Commission and Discount to Distributors and Customers	52,933	282,270	986,298	150,611
Total	52933	1606009	1941012	448866

Table 2 Cost of Goods Sold.

	Polyester (000) R.s	Soda Ash (000) R.s	Paints (000) R.s	Chemicals (000) R.s
Raw Material Consumed	$13,419,368$	$1,748,082$	$2,931,861$	945,199
Salaries, Wages and Benefits	336,069	540,016	96,312	39,211
Stores and Spares Consumed	118,723	119,593	3,704	3,510
Conversion Fee Paid to Contract Manufacturers	0	0	0	4,341
Oil, Gas and Electricity	$1,394,075$	$1,962,927$	28,851	7,523
Rent, Rates and Taxes	1,234	1,379	15,893	8,612
Insurance	17,722	16,236	27,849	973
Repairs and Maintenance	1,670	695	15,585	3,242
Depreciation and Amortization	319,963	455,542	75,205	15,087
Technical Fees	0	0	23,270	5,750
Royalty	0	0	0	24,862
General Expenses	106,805	83,627	67,637	10,965
Opening Stock of Work in Progress	54,163	0	15,600	1,655
Closing Stock of Work in Progress	$-24,388$	0	$-10,976$	-725
Cost of Goods Manufactured (Total)	$15,745,404$	$4,928,097$	$3,290,791$	$1,070,205$
Opening Stock of Finished Goods	509,236	207,554	246,586	141,658
Finished Goods Purchased	91,316	0	64,800	$1,193,235$
Closing Stock of Finished Goods	$-725,027$	$-58,912$	$-246,547$	$-233,838$
Provision for Obsolete Stocks	0	$-2,615$	$-21,969$	$-20,250$
Total	15620929	$5,074,124$	$3,333,661$	$2,151,010$

Table 3 Selling and Distribution Expenses.

	Polyester $(000) ~ R . s ~$	Soda Ash $(000) ~ R . s ~$	Paints (000) R.s	Chemicals (000) R.s
Salaries and Benefits	46,473	21,759	220,879	61,696
Repair and Maintenance	14	1,079	3,933	1,381
Advertising and Publicity	1,163	10,948	253,121	817
Rent, Rates and Taxes	0	1,282	19,323	739
Insurance	0	1,028	0	3,530
Lighting, Heating and Cooling	15	1,088	6,683	2,164
Depreciation and Amortization	0	277	0	2,151
Outward Freight and Handling	9,626	149,095	179,945	31,538
Traveling Expenses	7,022	2,703	30,082	12,171
Postage, Telegram, Telephone and Telex	529	1,325	7,046	3688
General Expenses	7,701	12,589	44,063	21,017
Total	72,543	203,173	765,075	140,892

Table 4 Administration and General Expenses.

	Polyester (000) R.s	Soda Ash $(000) ~ R . s ~$	Paints (000) R.s	Chemicals (000) R.s
Salaries and Benefits	129,271	191,647	168,579	81,934
Repair and Maintenance	2,986	3,930	9,147	1,003
Advertising and Publicity	1,837	3,681	1,372	866
Rent, Rates and Taxes	2,675	2,954	5,060	680
Insurance	735	1,858	692	425
Lightening, Heating and Cooling	3,637	6,200	4,655	1,416
Depreciation and Amortization	15,070	19,781	15,439	9,651
Provision for Doubtful Debts-Trade	0	0	138,262	401
Others	0	381	2,500	0
Provision for Obsolete Stock	0	2,615	21,969	20,250
Provision for Obsolete Spare	59,100	0	5,000	0
Traveling Expenses	10,138	9,652	12,732	6,791
Postage, Telegram, Telephone and	2,329	3,948	5,814	1,678
Telex	37,143	44,061	57,652	20,896
General Expenses	265,191	290,708	448,873	145,991
Total				

Table 5 Summarized Profit and Loss of the Company.

	Polyester Per Metric Tones (R.s)	Soda Ash Per Metric Tones(R.s)	Paints Per Kilo Liters (R.s)	Chemicals Per Metric Tones (R.s)	Total Available
Profit	15586.93	3066.59	3855.23	14406.69	
Commission and Discount	408.02	967.14	28533.76	9711.33	1472112000
Cost of Goods Sold	120411.1	17385.47	96443.35	138703.3	26179724000
Selling and Distribution Expenses	559.18	696.13	22133.74	9085.12	1181683000
Administration and General Expenses	2044.18	996.05	12985.97	9413.92	1150763000

Table 6 Various Production Runs in The Name Plate Capacity.

Production Runs		First digit Production Dynamics	Second Digit Production Dynamics	Third digit Production Dynamics	Forth Digit Production Dynamics
1	Allowable Range (Production Space) Metric tones, x3 in (000) Liters	$\begin{aligned} & \text { X1 } \downarrow 6 \\ & \text { X2 } \downarrow 4 \\ & \text { X3 } \downarrow 6 \\ & \text { X4 } \downarrow 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { X1 } \downarrow 30 \\ & \text { X2 } \downarrow 60 \\ & \text { X3 } \downarrow 60 \\ & \text { X4 } \uparrow 00 \\ & \hline \end{aligned}$	X1 $\downarrow 700$ X2 $\downarrow 800$ X3 $\downarrow 500$ X4 $\downarrow 500$ Z 28503	X1 $\downarrow 6000$ X2 $\downarrow 6000$ X3 $\downarrow 1000$ X4 $\downarrow 2000$
	Optimal Solution	$\begin{aligned} & Z=3273945708 \\ & x 1=129730 \\ & x 2=291957.13 \\ & x 3=34560 \\ & x 4=15500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Z}=3274745238 \\ & \mathrm{x} 1=129700 \\ & \mathrm{x} 2=292400.64 \\ & \mathrm{x} 3=34506 \\ & \mathrm{x} 4=15508 \\ & \hline \end{aligned}$	$\begin{aligned} & Z=3289350377 x \\ & 1=129030 \\ & x 2=303470.93 \\ & x 3=34066 \\ & x 4=15008 \end{aligned}$	$\begin{aligned} & Z=3319164040 \\ & \mathrm{x} 1=127588.57 \\ & \mathrm{x} 2=328195.06 \\ & \mathrm{x} 3=33566 \\ & \mathrm{x} 4=13508 \end{aligned}$
	Benefits (R.S)	189,708	989,238	15,594,377	45,408,040
2	Allowable Range (Production Space) Metric tones, x3 in (000) Liters	$\begin{aligned} & \text { X1 } \downarrow 5 \\ & \text { X2 } \downarrow 3 \\ & \text { X3 } \downarrow 5 \\ & \text { X4 } \downarrow 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { X1 } \downarrow 20 \\ & \text { X2 } \downarrow 50 \\ & \text { X3 } \downarrow 50 \\ & \text { X4 } \uparrow 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { X1 } \downarrow 600 \\ & \text { X2 } \downarrow 700 \\ & \text { X3 } \downarrow 400 \\ & \text { X4 } \downarrow 400 \\ & \hline \end{aligned}$	$\mathrm{X} 1 \downarrow 5000$ $\mathrm{X} 2 \downarrow 5000$ X3 $\downarrow 0000$ $\mathrm{X} 4 \downarrow 1000$
	Optimal Solution	$\begin{aligned} & \mathrm{Z}=3273916841 \\ & \mathrm{x} 1=129731 \\ & \mathrm{x} 2=291936.68 \\ & \mathrm{x} 3=34561 \\ & \mathrm{x} 4=15501 \end{aligned}$	$\begin{aligned} & \mathrm{Z}=3274456565 \\ & \mathrm{x} 1=129710 \\ & \mathrm{x} 2=292196.13 \\ & \mathrm{x} 3=34516 \\ & \mathrm{x} 4=15518 \end{aligned}$	$\begin{aligned} & \mathrm{Z}=3286463647 \\ & \mathrm{x} 1=129130 \\ & \mathrm{x} 2=301425.79 \\ & \mathrm{x} 3=34166 \\ & \mathrm{x} 4=15108 \end{aligned}$	$\begin{aligned} & \mathrm{Z}=1285553934 \mathrm{x} \\ & 1=129427.68 \\ & \mathrm{x} 2=301931.95 \\ & \mathrm{x} 3=34566 \\ & \mathrm{x} 4=14508 \end{aligned}$
	Benefits (R.S)	160,841	700,565	12,707,647	11,797,934
3	Allowable Range (Production Space) Metric tones, x3 in (000) Liters	$\begin{aligned} & \text { X1 } \downarrow 4 \\ & \text { X2 } \downarrow 2 \\ & \text { X3 } \downarrow 4 \\ & \text { X4 } \downarrow 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { X1 } \downarrow 10 \\ & \text { X2 } \downarrow 40 \\ & \text { X3 } \downarrow 40 \\ & \text { X4 } \uparrow 20 \\ & \hline \end{aligned}$		No Optimal Solution
	Optimal Solution	$\begin{aligned} & \mathrm{Z}=3273887974 \\ & \mathrm{x} 1=129732 \times 2 \\ & =291916.23 \times 3= \\ & 34562 \\ & \mathrm{x} 4=15502 \end{aligned}$	$\begin{aligned} & \mathrm{Z}=3274167892 \\ & \mathrm{x} 1=129720 \\ & \mathrm{x} 2=291991.61 \\ & \mathrm{x} 3=34526 \\ & \mathrm{x} 4=15528 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Z}=3283576918 \\ & \mathrm{x} 1=129230 \\ & \mathrm{x} 2=299380.64 \\ & \mathrm{x} 3=34266 \\ & \mathrm{x} 4=15208 \end{aligned}$	
	Benefits (R.S)	131,974	411,892	9,820,918	
4	Allowable Range (Production Space) Metric tones, x3 in (000) Kilo Liters Optimal Solution	$\begin{aligned} & \hline \text { X1 } \downarrow 3 \\ & \text { X2 } \downarrow 1 \\ & \text { X3 } \downarrow 3 \\ & \text { X4 } \downarrow 5 \\ & \hline \text { Z }=3273859107 \\ & \text { x1 }=129733 \mathrm{x} 2 \\ & =291895.78 \\ & \text { x3 }=34563 \\ & \text { x } 4=15503 \\ & \hline \end{aligned}$	No Optimal Solution	$\begin{aligned} & \mathrm{X} 1 \downarrow 400 \\ & \mathrm{X} 2 \downarrow 500 \\ & \text { X3 } \downarrow 200 \\ & \mathrm{X} 4 \downarrow 200 \\ & \mathrm{Z}=3280508598 \\ & \mathrm{x} 1=129362.12 \\ & \mathrm{x} 2=297112.98 \\ & \mathrm{x} 3=34366 \\ & \mathrm{x} 4=15308 \end{aligned}$	No Optimal Solution
	Benefits (R.S)	103,107		6,752,598	
5	Allowable Range (Production Space) Metric tones, x3 in (000)Liters Optimal Solution	$\begin{array}{\|l} \hline \text { X1 } \downarrow 2 \\ \text { X2 } \downarrow 0 \\ \text { X3 } \downarrow 2 \\ \text { X4 } \downarrow 4 \\ \hline \mathrm{Z}=3273830239 \\ \mathrm{x} 1=129734 \mathrm{x} 2 \\ =291875.33 \\ \mathrm{x} 3=34564 \\ \text { x } 4=15504 \\ \hline \end{array}$	No Optimal Solution	$\mathrm{X} 1 \downarrow 300$ $\mathrm{X} 2 \downarrow 400$ $\mathrm{X} 3 \downarrow 100$ $\mathrm{X} 4 \downarrow 100$ $\mathrm{Z}=3277147587 \mathrm{x}$ $1=129546.03$ $\mathrm{x} 2=294486.67$ $\mathrm{x} 3=34466$ $\mathrm{x} 4=15408$	No Optimal Solution
	Benefits (R.S)	74,239		3,391,587	

[^0]
8. FIGURES

Figure 1 Answer Report.

Figure 2 Limits Report.

Adjustable Name	Value	Lower Limit	Target Result	Upper Limit	Target Result
QUANTITY SOLD POLYSTER	129730	129730	3273786300	129730	3273786300
QUANTITY SOLD SODA ASH	291860.0276	291860	3273786215	291860.0276	3273786300
QUANTITY SOLD PAINTS	34566	34566	3273786300	34566	3273786300
QUANTITY SOLD CHEMICALS	15508	15508	3273786300	15508	3273786300

Figure 3 Sensitivity Report.

Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease	
QUANTITY SOLD POLYSTER	129730	-5652.151475	15586.93	5652.151475	$1 \mathrm{E}+30$	
QUANTITY SOLD SODA ASH	291860.0276	0	3066.59	$1 \mathrm{E}+30$	816.0819578	
QUANTITY SOLD PAINTS	34566	-13156.22915	3855.23	13156.22915	$1 \mathrm{E}+30$	
QUANTITY SOLD CHEMICALS	15508	-10058.91256	14406.69	10058.91256	$1 \mathrm{E}+30$	
	Final	Shadow	Constraint	Allowable	Allowable	
Name	Value	Price	R.H. Side	Increase	Decrease	
COMISSION AND DISTCOUNT	1472103196	0	1472112000	$1 \mathrm{E}+30$	8804.48129	
COST OF GOODS SOLD	26179724000	0.176388099	26179724000	4148.959933	480.2999976	
SELLING AND DISTRIBUTION	1181681840		0	1181683000	$1 \mathrm{E}+30$	1159.768352
COST	1150762762	0	1150763000	$1 \mathrm{E}+30$	237.7026069	
ADMIN AND GENERAL COST						

[^0]: \downarrow = Quantiy Decreased By
 $\uparrow=$ Quantity Increased By

